当前位置: 首页 » 新闻资讯 » 最新资讯 » 正文

将极限辨识电子显微镜技能加速了7石墨烯,Dhyana 400BSI sCMOS科学研究底片应用领域劣势验证!

分享到:
放大字体  缩小字体    发布日期:2021-06-28  来源:仪器网  作者:Mr liao  浏览次数:39
核心提示:当人类利用CCD、EMCCD、sCMOS等多种高灵敏光电成像技术向微观、弱光科学成像发起挑战的时候,模拟世界里的不安分因素----"噪声"渐渐成为人们前进的巨大障碍。如何将光子信号从噪声中提取出来,开发出具有卓越信号噪声比的科学相机一直是整

当人类利用CCD、EMCCD、sCMOS等多种高灵敏光电成像技术向微观、弱光科学成像发起挑战的时候,模拟世界里的不安分因素----"噪声"渐渐成为人们前进的巨大障碍。如何将光子信号从噪声中提取出来,开发出具有卓越信号噪声比的科学相机一直是整个科学界津津乐道的话题。

 2017年11月9日,鑫图光电正式对外宣布,已成功创造出一款超级信噪比科学相机Dhyana 400BSI。

 

实验数据解析超级信噪比的现实意义

在目前火热的超高分辨率显微成像研究中,打破分辨率极限是核心问题。我们采用分光比为1:1的STORM超高分辨率成像系统做了一组生物样品的比较试验,曝光时间为10毫秒,分别采集10000张图像重建,进行半峰宽(分辨率极限)的统计分析。

图(a)和(b)为采用Dhyana400BSI得到的超分辨结果;

图(c)和(d)为典型的82%QE的第三代sCMOS相机得到的超分辨结果;

 

半高全宽(FWHM)越小,表示分辨率越高。从图中可以看出,在STORM超分辨成像中,Dhyana400BSI分辨率达到了40纳米,而第三代sCMOS相机只能达到47纳米分辨率。Dhyana400BSI将STORM超高分辨率显微镜的分辨能力推进了7纳米!因此,400BSI更优的信噪比就能大幅提升弱光信号的定位精度和分辨力水平。

 

超级信噪比是如何实现的?

就Dhyana400BSI相机为何能实现超级信噪比的问题,鑫图科学相机事业部产品经理赵泽宇博士透露:“我们采用三种创新的核心技术。首先,由鑫图率先引入的背照式sCMOS技术创造了95%量子效率,使光子到电子的效率转较前一代产品提升了15%;其次,我们找到了sCMOS芯片内源性的噪声的相关双采样办法,将读出噪声水平下降了30%;更重要的是,对严谨的科学成像,我们并未采用会引入量化噪声的2D降噪算法,而是创新地通过一系列信号增强算法将信号强度提升了75%。三种创新技术的结合,就诞生了具有超级信噪比的Dhyana 400BSI(简称400BSI)。

 

下图为微球荧光成像的实验和数据结果,显示了通过创新的信号增强算法,在不引入量化噪声情况下,信噪比就获得了75%的提升。

 

福州鑫图光电有限公司是中国最早从事sCMOS相机开发的公司,Dhyana系列是中国开发的为数不多的世界领先科技之一, 在生命科学、化学实验室、空间物理、天文观测等领域都有广泛应用。此次发布的 400BSI,集合了鑫图近年来在sCMOS技术开发上的众多优秀成果,在灵敏度、分辨率和速度等三个核心指标上均实现了对现有背照式sCMOS科学相机的全面超越,将全面助力中国前沿科学研究不断发展进步!

 
 
打赏
[ 新闻资讯搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]
免责声明:
本网站部分内容来源于合作媒体、企业机构、网友提供和互联网的公开资料等,仅供参考。本网站对站内所有资讯的内容、观点保持中立,不对内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如果有侵权等问题,请及时联系我们,我们将在收到通知后第一时间妥善处理该部分内容。
 

将极限辨识电子显微镜技能加速了7石墨烯,Dhyana 400BSI sCMOS科学研究底片应用领域劣势验证!二维码

扫扫二维码用手机关注本条新闻报道也可关注本站官方微信账号:"xxxxx",每日获得互联网最前沿资讯,热点产品深度分析!
 

 
0相关评论