作为一切生命活动存在的物质基础和唯一形式,蛋白质同时也是诊断疾病、治疗疾病的物质基础或药物。人类蛋白数量不仅远超过基因数量,而且由于蛋白质的可变性和多样性导致了蛋白质研究技术远比核酸技术要复杂和困难的多。因此人类蛋白质构成了后基因组时代最重要的研究内容,具有无限广阔的研究前景。虽然蛋白质具有许多各种各样的功能,然而生物体内存在的天然蛋白质,有的往往不尽人意,人们就想通过改造蛋白质来得到特定功能的蛋白质,于是蛋白质工程出现了。
蛋白质工程是在基因重组技术、生物化学、分子生物学、分子遗传学等学科的基础之上,融合了蛋白质晶体学、蛋白质动力学、蛋白质化学和计算机辅助设计等多学科而发展起来的新兴研究领域。其内容主要有两个方面:根据需要合成具有特定氨基酸序列和空间结构的蛋白质;确定蛋白质化学组成、空间结构与生物功能之间的关系。在此基础之上,实现从氨基酸序列预测蛋白质的空间结构和生物功能,设计合成具有特定生物功能的全新的蛋白质,这也是蛋白质工程最根本的目标之一。
蛋白质工程尚未有统一的定义。一般认为蛋白质工程就是通过基因重组技术改变或设计合成具有特定生物功能的蛋白质。实际上蛋白质工程包括蛋白质的分离纯化,蛋白质结构和功能的分析、设计和预测,通过基因重组或其它手段改造或创造蛋白质。从广义上来说,蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白质或设计合成具有特定功能的新蛋白质。

蛋白质工程就是根据蛋白质的精细结构与功能之间的关系,利用基因工程的手段,按照人类自身的需要,定向地改造天然的蛋白质,甚至创造新的、自然界本不存在的、具有优良特性的蛋白质分子。蛋白质工程自诞生之日起,就与基因工程密不可分。基因工程是通过基因操作把外源基因转入适当的生物体内,并在其中进行表达,它的产品还是该基因编码的天然存在的蛋白质。
蛋白质工程则更进一步。它可以根据对分子预先设计的方案,通过对天然蛋白质的基因进行改造,来实现对它所编码的蛋白质进行改造。因此,它的产品已不再是天然的蛋白质,而是经过改造的、具有了人类所需要的优点的蛋白质。天然蛋白质都是通过漫长的进化过程而形成的,而蛋白质工程对天然蛋白质的改造,好比是在实验室里加快了进化的过程。
天然蛋白质合成的过程是按照中心法则进行的:基因→表达(转录、翻译)→形成氨基酸序列的多肽链→形成具高级结构的蛋白质→行使生物功能,而蛋白质工程却相反,它的基本途径是:从预期的蛋白质功能出发→设计预期的蛋白质结构→推测应有的氨基酸序列→找到相对应的脱氧核苷酸序列(基因结构)。然后可以根据推出的核苷酸序列进行人工合成或从基因库中提取并进行加工和修饰。
蛋白质功能→设计预期的蛋白质结构→推测应有的氨基酸序列→找到相应的脱氧核苷酸序列
1、生物催化领域
蛋白质工程技术广泛应用于生物催化领域。酶具有底物特异性,野生酶经过了长期的进化和自然选择,对天然底物具有良好的催化性质。但是目前很多化工产品都是人工合成的而非天然产物,野生酶对这些人工合成底物的催化性能就会大打折扣表现出:活性低,选择性差,和不稳定等多种缺点。蛋白质工程技术通过在基因层面对酶蛋白的结构进行改造,从而可以大大改善酶蛋白对人工合成底物的催化性能。蛋白质工程技术使得人类可以按照自己的要求设计酶蛋白,从而摆脱了以前“靠天吃饭”的局限,大大提高了酶催化反应在化合物合成中的应用。因此蛋白质工程技术对于生物转化产业的发展具有十分重要的意义。
2、免疫领域——嵌合抗体
免疫球蛋白呈Y型,由二条重链和二条轻链通过二硫键相互连接而构成。每条链可分为可变区(N端)和恒定区(C端),抗原的吸附位点在可变区,细胞毒素或其他功能因子的吸附位点在恒定区。每个可变区中有三个部分在氨基酸序列上是高度变化,在三维结构上是处在β折叠端头的松散结构(CDR),是抗原的结合位点,其余部分为CDR的支持结构。不同种属的CDR结构是保守的,这样就可以通过蛋白质工程对抗体进行改造。
3、蛋白质融合
脑啡肽(Enk)N端5肽线形结构是与δ型受体结合的基本功能区域,干扰素(IFN)是一种广谱抗病毒抗肿瘤的细胞因子。黎孟枫等人化学合成了EnkN端5肽编码区,通过一连接3肽编码区与人α1型IFN基因连接,在大肠杆菌中表达了这一融合蛋白。以体外人结肠腺癌细胞和多形胶质瘤细胞为模型,采用3H-胸腺嘧啶核苷掺入法证明该融合蛋白抑制肿瘤细胞生长的活性显著高于单纯的IFN,通过Naloxone竞争阻断实验证明,抑制活性的增高确由Enk导向区介导。
手机版|
二维码|







